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Letters
Tandem Diels–Alder reaction/radical cyclizations for the rapid
construction of bridged ring systems
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Abstract—Bridged tricyclic ring systems can be prepared in a one-pot reaction using a tandem Diels–Alder reaction/radical cycli-
zation strategy. The regiochemistry of the radical addition is unexpected.
� 2003 Elsevier Ltd. All rights reserved.
Tandem reaction chemistry has been frequently utilized
in the synthesis of polycyclic molecules. While there are
many applications of tandem reactions to fused sys-
tems,1 there are few applications of tandem reactions to
bridged ring systems. Except for examples using a furan
as the diene, the use of a Diels–Alder reaction in tandem
with a radical cyclization has not been reported.2 We
describe herein a novel tandem Diels–Alder reaction/
radical cyclization strategy for the construction of
bridged tricyclic ring systems.

The general plan is to react a suitable diene with an
activated quinone3–5 to produce intermediate 1. The
group G in the resulting endo-Diels–Alder adduct could
then give rise to a radical, which could cyclize to form
tricyclic system 2 or 3 (Fig. 1).

Although the dienes with G¼Br or OC(S)SMe were
easily prepared from the corresponding alcohol,6 they
afforded poor yields in the Diels–Alder step. Fortu-
nately, the dienes 5a and 5b, wherein G was a Barton
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thiopyridyl ester,7 were stable enough to undergo suc-
cessful cycloadditions at ambient temperature.
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Cycloaddition followed by irradiation of the adduct
using a 275W sunlamp at 0 �C generated the tricyclic
diketone 6.8;9 The reactions of dienes 5a and 5b with
various quinones are listed below (Schemes 1 and 2).

The cycloaddition proceedes well with quinones bearing
an electron withdrawing substituent. Desulfurization of
the adduct using Raney nickel in ethanol10 produced the
product in modest yield. However, reduction of 6a with
tributyltin hydride11 afforded product 7 in 88% yield.
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Scheme 1. Reagents and conditions: (a) R¼CO2Me, R0 ¼H 73%; (b) R¼CO2Me, R0 ¼Me 57%; (c) R¼COMe, R0 ¼H 55%; (d) R¼COMe,

R0 ¼Me 75%.
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The regiochemistry of 7 was confirmed by an X-ray
structure determination. The regiochemistry of radical
attack by a 6-endo-trig pathway is unexpected and may
reflect a reversible radical addition.

In view of the unexpected results with dienes 5a and 5b,
we also synthesized known diene 812 and reacted its
thiopyridyl ester with carbomethoxybenzoquinone at
ambient temperature followed by irradiation with a
sunlamp at 0 �C. Tricyclic diketone 9 was produced in
61% yield. The regiochemistry of 9 was confirmed by an
X-ray structure determination of the desulfurized
product 10.13 Interestingly, this radical preferred the
opposite regioselectivity.
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The reaction of dienes with quinones provides a con-
venient entry to bridged bicyclic systems from readily
available starting materials.
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